A 3D rotational and sequential spheric puzzle, Designed, Engineered and Manufactured with 100\% European Quality. During the assembling process, no glue nor any metallic element such as springs, screws or washers are used. Actually, all of its 54 pieces are built with high quality and 100% recyclable plastic. New, original, quiet and well defined movements, with the guarantee of a longwearing product. Surface of the Marusenko sphere has 24 triangles (arranged in 6 poles) and 8 stars (leaving a total of 32 moving pieces). Its $2,279,626,699,712,199,018,518,937,600,000$ positions (around 2.3×10^{30}) and all of its potencial color configuration led us to present the sphere in 5 different designs, offering different levels of creativity and complexity. We hope that this challenge will be to your liking and we sincerely appreciate your purchase.

Standard Method Summary:
We solve the sphere from North to South, following the next steps:
0.-Basic Concepts: Solved Pole concept, movements, orientation and grey color meaning.
1.-Orient the sphere: Noth Pole (as active pole) and Front Pole (as auxiliary pole).
2.-Learn how to bring a trianngle to the Front Pole (auxiliary step, when necessary).
3.-Solve ${ }^{\text {st }}$ North Pole: match 4 internal triangles with their surounding respective stars
4.-Repeat Step \#3 to solve Side Poles in North Pole position, (the $2^{\text {nd }}, 3^{\text {rdd }}, 4^{\text {th }}$ and $5^{\text {th }}$ Poles)
5.-Solve the $6^{\text {th }}$ Pole according to its color layout of triangles
6.-Check all the poles and arrange the macro-triangles

The Classic/Contrast sphere represents level 4 among the 5 levels that Marusenko offers. This method is not unique nor the fastest but it is an step-by-step approach in order to solve the sphere from any of its $242.418 .070 .100 .640\left(2,4 \times 10^{14}\right)$ possible positions. This method consists in solving the 5 first Poles, pole by pole and with the same method: One by one, select and fix each of them as the "north pole", then select each time as the "front pole" any of the unresolved Side Poles. Finally, to solve the $6^{\text {th }}$ pole a specific sequence of twists will be used, depending on the case got: "adjacent-triangle swap" or "opposite-triangle swap". After this first contact with this standard method, you will soon come up with your own trick and shortcuts, which leads to your own fast and smart solution.

BASIC CONCEPTS: Solved Pole Concept, movements and re-orientation.

STEP \#1: Orienting the Sphere: choosing-viewing the North Pole, Frontal Pole and 1st Reference Star.

We choose any star as the "Front Upper Left star", (in this example we choose a "blue star"), and hold the sphere leaving this star in the desired position. In this way, our "North Pole" and our "Front Pole" are determined.

The remaining other 3 stars of the North Pole, could have any colour. In this examle: "yellow" for the top left back star, "green" for the top right back star and "red" for the top right front star. They have been choosen in different colors in the benefit of an easier understanding of the method, but it can happen that two of them could have the same color. The goal now will be to place triangles in the North Pole (Pole to be solved) bringing them from the Front Pole (unsolved Pole, yet). If no triangle is available in the Front Pole, use the method described in Step \#2 to bring one from any other unsolved Pole (Side Pole or South Pole).

STEP \#2: Learning to bring a triangle to the Front Pole. (AUXILIARY STEP: useful when we are executing 3rd and subsequent steps).
Next steps, when we are solving the North Pole in one color, triangles of this color should rest in the Front Pole before placing them in their position in the North Pole (Step \#3 and following ones). Therefore we will now learn this auxiliary step, that is to bring any triangle to our Front Pole without undoing the position of the stars already resolved. We execute this example with a "blue triangle". Remind that "clear grey coloured pieces" mean that during that step these pieces could be from any colour. Two situations can take place:
1.- Bring a triangle to the "Front Pole" from "any Side Pole"
2.- Bring a triangle to the "Front Pole" from the "South Pole"
 Not all the intermediate steps are always necessary.

STEP \#3: Solving the North Pole:
Join 4 triangles in the North Pole with their respective stars corresponding to the 4 stars are surrounding the North Pole. Bring one-by-one 4 appropiate triangles from the Front Pole (unsolved Pole at this stage) to the North Pole.

If no triangle is available in the Front Pole, use the method described in Step \#2 to bring one from any other pole. This operation is indicated using a yellow-coloured rectangle.

STEP \#4: Solving the Side Poles repeating step \#3:

STEP \#5 Solve the $6^{\text {th }}$ Pole.

STEP \#6

ARRANGE THE MACRO-TRIANGLES :

At this stage each star should have its surrounding triangles of the same color. Just some remaining "ecuatorial" and "half right" twists, as the ones shown in the example, and the sphere will finally be resolved.

MARUSENKO GUARANTEE:

100 \% guaranteed product:

www.marusenko.com
customer@marusenko.com
Marusenko s.l.
C/ Roncesvalles 10, 31350 Peralta
(Navarra) SPAIN

Patented Product: WO 20041030776 20077028837 PCT/ES2005/000485
$<\underbrace{\substack{\text { ASTM F963-0 } \\ \text { CPSC } \\ \text { FPH }}}_{\substack{\text { CPSIA }}}$

